csc是什么三角函数
时间:2023-10-17 21:27:26 栏目:生活资讯三角函数csc是余割函数,是直角三角形的斜边与锐角的对边之比,用csc(角度)表示。一个角的顶点与该角端点上的另一个任意点之间的距离除以下一个点的非零纵坐标。角的顶点与平面直角坐标系的原点重合,其起点与X轴正方向重合,称为cscx。
三角函数是基本的初等函数之一,它以角度(数学中最常用的弧系,下同)为自变量,角度对应任意角度的终边与单位圆的交点坐标或其比值为因变量。也可以等效定义为与单位圆相关的各种线段的长度。
三角函数在研究三角形、圆形等几何形状的性质中具有重要作用,也是研究周期现象的基本数学工具。在数学分析中,三角函数也被定义为无穷级数或特定微分方程的解,允许其值扩展到任意实值,甚至复值。
三角函数起源
公元五世纪到十二世纪,印度数学家对三角学作出了较大的贡献。尽管当时三角学仍然还是天文学的一个计算工具,是一个附属品,但是三角学的内容却由于印度数学家的努力而大大的丰富了。
三角学中”正弦”和”余弦”的概念就是由印度数学家首先引进的,他们还造出了比托勒密更精确的正弦表。
我们已知道,托勒密和希帕克造出的弦表是圆的全弦表,它是把圆弧同弧所夹的弦对应起来的。印度数学家不同,他们把半弦(AC)与全弦所对弧的一半(AD)相对应,即将AC与∠AOC对应,这样,他们造出的就不再是”全弦表”,而是”正弦表”了。
印度人称连结弧(AB)的两端的弦(AB)为”吉瓦(jiba)”,是弓弦的意思;称AB的一半(AC) 为”阿尔哈吉瓦”。后来”吉瓦”这个词译成阿拉伯文时被误解为”弯曲”、”凹处”,阿拉伯语是 ”dschaib”。十二世纪,阿拉伯文被转译成拉丁文,这个字被意译成了”sinus”。
三角函数公式
诱导公式
(1)
sinx=sin(x+2kπ)
cosx=cos(x+2kπ)
tanx=tan(x+2kπ)
k∈Z
原理:终边相同的角同一三角函数值相同(或可用三角函数图像的周期性验证)
(2)
sin(-x)=-sinx
cos(-x)=cosx
tan(-x)=-tanx
(3)
sin(π+x)=-sinx
cos(π+x)=-cosx
tan(π+x)=tanx
(4)
sin(π-x)=sinx
cos(π-x)=-cosx
tan(π-x)=-tanx
原理:三角函数值中,正弦一二象限为正,余弦一四象限为正,正切一三象限为正(终边)
(5)
sin(π/2+x)=cosx
cos(π/2+x)=-sinx
tan(π/2+x)=-cotx
(6)
sin(π/2-x)=cosx
cos(π/2-x)=sinx
tan(π/2-x)=cotx
版权声明:
1、本文系转载,版权归原作者所有,旨在传递信息,不代表看本站的观点和立场。
2、本站仅提供信息发布平台,不承担相关法律责任。
3、若侵犯您的版权或隐私,请联系本站管理员删除。
4、本文由会员转载自互联网,如果您是文章原创作者,请联系本站注明您的版权信息。