矩阵可以随意换行吗
时间:2023-10-17 21:27:02 栏目:生活资讯矩阵的两行或两列可以互换;不需要像行列式一样变号。一般矩阵在一定程度上可以看成是方程组的系数组成的,本质上来说说就是一行一行的方程组构成了矩阵,由此可想,在方程组中交换方程的位置并不影响方程最终的答案,应用于矩阵也一致,所以交换行列不影响矩阵。
若矩阵A经过有限次的初等行变换变为矩阵B,则矩阵A与矩阵B行等价;若矩阵A经过有限次的初等列变换变为矩阵B,则矩阵A与矩阵B列等价;若矩阵A经过有限次的初等变换变为矩阵B,则矩阵A与矩阵B等价。所以行变换不改变矩阵。
求逆矩阵,和求解联立方程组。不过要注意这种分解法所得到的上下三角形矩阵并非唯一,还可找到数个不同 的一对上下三角形矩阵,此两三角形矩阵相乘也会得到原矩阵。矩阵相当于方程组,换行相当于方程之间互相换一下顺序,所以不用换行; 行列式是需要计算最后得到的数字的,所以换行需要变换符号,即正变负。
矩阵是高等代数学中的常见工具,其运算是数值分析领域的重要问题。矩阵如剑术招式,是线性代数的“表之核心”。线性代数是为了研究线性方程组而诞生的学科,而矩阵则以一种直观而简洁的方式将线性方程组,以及线性方程组的求解过程给表达了出来,其意义之非凡,自是不言而喻。
将矩阵分解为简单矩阵的组合,可以在理论和实际应用上简化矩阵的运算。矩阵分解 (decomposition,factorization)是将矩阵拆解为数个矩阵的乘积,可分为三角分解、满秩分解、QR分解、Jordan分解和SVD(奇异值)分解等。奇异值是矩阵里的概念,一般通过奇异值分解定理求得。设A为m*n阶矩阵,q=min(m,n),A*A的q个非负特征值的算术平方根叫作A的奇异值。
英国数学家阿瑟·凯利被公认为矩阵论的奠基人。他开始将矩阵作为独立的数学对象研究时,许多与矩阵有关的性质已经在行列式的研究中被发现了,这也使得凯利认为矩阵的引进是十分自然的。他说:“我决然不是通过四元数而获得矩阵概念的;它或是直接从行列式的概念而来,或是作为一个表达线性方程组的方便方法而来的。”
他从1858年开始,发表了《矩阵论的研究报告》等一系列关于矩阵的专门论文,研究了矩阵的运算律、矩阵的逆以及转置和特征多项式方程。凯利还提出了凯莱-哈密尔顿定理,并验证了3×3矩阵的情况,又说进一步的证明是不必要的。哈密尔顿证明了4×4矩阵的情况,而一般情况下的证明是德国数学家弗罗贝尼乌斯(F.G.Frohenius)于1898年给出的。
版权声明:
1、本文系转载,版权归原作者所有,旨在传递信息,不代表看本站的观点和立场。
2、本站仅提供信息发布平台,不承担相关法律责任。
3、若侵犯您的版权或隐私,请联系本站管理员删除。
4、本文由会员转载自互联网,如果您是文章原创作者,请联系本站注明您的版权信息。