已知点A、B是双曲线x2-=1上的两点,O为坐标原点,且满足·=0,则点O到直线AB
时间:2024-04-25 00:47:54 栏目:学习方法题目内容:
已知点A、B是双曲线x2-=1上的两点,O为坐标原点,且满足
A.B.
C.2
D.2
最佳答案:
A
答案解析:
分析:本题是关于圆锥曲线中的点到线的距离问题,由于双曲线为中心对称图形,为此可考查特殊情况,设A为y=x与双曲线在第一象限的交点,则得到B为直线y=-x与双曲线在第四象限的一个交点,因此直线AB与x轴垂直,点O到AB的距离就为点A或点B的横坐标的值,联立直线与双曲线的解析式,求出x的值即可.
解:由
令点A为直线y=x与双曲线在第一象限的交点,
因此点B为直线y=-x与双曲线在第四象限的一个交点,
因此直线AB与x轴垂直,点O到AB的距离就为点A或点B的横坐标的值,
由
解得x=
故选A.
考点核心:
平面向量在几何、物理中的应用
1、向量在平面几何中的应用:
(1)证明线段相等平行,常运用向量加法的三角形法则、平行四边形法则,有时也用到向量减法的定义;
(2)证明线段平行,三角形相似,判断两直线(或线段)是否平行,常运用到向量共线的条件;
(3)证明垂直问题,常用向量垂直的充要条件;
1、向量在三角函数中的应用:
(1)以向量为载体研究三角函数中最值、单调性、周期等三角函数问题;
(2)通过向量的线性运算及数量积、共线来解决三角形中形状的判断、边角的大小与关系。
2、向量在物理学中的应用: 由于力、速度是向量,它们的分解与合成与向量的加法相类似,可以用向量方法来解决,力做的功就是向量中数量积的一种体现。
3、向量在解析几何中的应用:
(1)以向量为工具研究平面解析几何中的坐标、性质、长度等问题;
(2)以向量知识为工具研究解析几何中常见的轨迹与方程问题。
版权声明:
1、本文系转载,版权归原作者所有,旨在传递信息,不代表看本站的观点和立场。
2、本站仅提供信息发布平台,不承担相关法律责任。
3、若侵犯您的版权或隐私,请联系本站管理员删除。
4、本文由会员转载自互联网,如果您是文章原创作者,请联系本站注明您的版权信息。